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Abstract. A theoretical model of the extension and confinement of globular polysoaps predicts novel force
laws. Polysoaps are polymers comprising of a flexible hydrophilic backbone incorporating, at intervals,
amphiphilic monomers. The equilibrium configuration of long polysoaps, that form numerous spherical
intrachain micelles, is a spherical globule of close packed micelles. The coupling of the deformation to the
hierarchical self organization of the chain gives rise to a distinctive force law involving, for extension, two
plateau regimes. When the chain is stretched by extensional flow the two regimes merge and the polysoap
exhibits a single globule-stretch transition.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 61.25.Hq Macromolecular and polymer
solutions; polymer melts; swelling – 82.70.Dd Colloids

1 Introduction

Intrachain self assembly can have a strong effect on the
elasticity of polymer chains. This is due to the coupling
of the chain deformation and the “internal degrees of
freedom” of the self assembled structures. The expected
behavior can be especially rich when the intrachain self
assembly leads to a hierarchical self organization. In the
following we present a theoretical discussion of the behav-
ior of a particularly simple model system of this type: glob-
ular polysoaps. Polysoaps are hydrophilic, flexible poly-
mers that incorporate, at intervals, m covalently bound
amphiphilic monomers [1–3]. The amphiphilic monomers
can self assemble into intrachain micelles [4,5]. The equi-
librium configuration of a long polysoap, capable of form-
ing numerous, spherical, intrachain micelles, is globular
i.e., a sphere comprising of close packed micelles [5]. The
self organization of the polysoap involves a three levels
hierarchy. One can refer to the sequence of amphiphilic
and non amphiphilic monomers as primary structure and
to the intrachain micelles as secondary structure (Fig. 1).
Similarly, we may refer to the configuration of a string
of micelles as tertiary structure. As we shall see, the de-
formation of globular polysoaps reflects coupling to both
secondary and tertiary structures. The effect is especially
striking when the chain is extended. Relatively weak de-
formations couple to the tertiary structure. The situa-
tion is similar to that obtained upon deformation of col-
lapsed homopolymers [6,7]. Strong extensions couple to
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Fig. 1. The hierarchy of self organization of globular
polysoaps. The chemical sequence of amphiphilic monomers
joined by hydrophilic spacer chains is depicted in (a). The poly-
merized amphiphiles self assemble into spherical intrachain mi-
celles (b). Finally, the intrachain micelle form a spherical glob-
ule of close packed micelles (c). This last configuration is stable
because of the exchange attraction.

the secondary structure. The resulting scenario is identi-
cal to that encountered in the analysis of linear strings
of micelles [8–10]. In both regimes, the coupling result is
an intramolecular coexistence leading to a plateau in the
extension force law (Fig. 2). The combined scenario, in-
volving two plateaus, is distinctive to globular polysoaps.
This picture is however modified when the extension is
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Fig. 2. The force profile characterizing the extension of glob-
ular polysoaps when the end to end distance is externally im-
posed. Intially the globule unfolds into a string of micelles.
Stronger deformation favor miceller dissociation. Both regimes
involve a plateau associated with a coexistence of two states.

accomplished by an extensional flow. In this situation the
two stages merge and the chain undergoes a single globule-
stretch transition.

The elasticity of globular polysoaps is of interest from
two perspectives. Polysoaps belong to a wider class of hy-
drophobically modified polymers [11,12]. These are widely
used as viscosity modifiers and colloidal stabilizers of fine,
water born dispersions. A theoretical understanding of the
elasticity of polysoaps can help to elucidate their rheology.
To this end we will briefly consider the behavior of glob-
ular polysoaps in extensional flow. The problem is also of
interest in view of recent developments in the biophysics
of biological macromolecules. The hierarchical self assem-
bly of polysoaps is a simple example of the much richer
phenomena found in biopolymers such as nucleic acids
and proteins. Recent experimental developments enable
the measurement of the force laws characterizing the ex-
tension of certain biopolymers. Theoretical analysis of the
observed traits is however difficult, especially in the case of
proteins. From this perspective, the deformation behavior
of polysoaps may help in the interpretation of these ex-
perimental results. In fact, the force laws predicted for
a linear string of micelles [9,10] are qualitatively similar
to the force laws measured for DNA [13,14] and Titin
[15,16]. While the force laws predicted for globular
polysoaps have not been, to our knowledge, observed we
speculate that the extension of globular multidomain pro-
teins may exhibit similar features.

The article is organized as follows: the intrachain
self assembly of polysoaps is summarized in Section 2.
In particular: the structure of intrachain micelles, their
interactions, and the configurations of long polysoaps.
In Section 3 we analyze the extension elasticity of the sta-
ble configuration of long polysoaps i.e., spherical, globular
arrays of closely packed intrachain micelles. The behavior
of globular polysoaps in extensional flows is discussed in
Section 4.

2 Intramolecular self assembly in polysoaps

Our discussion concerns polysoaps in which the am-
phiphilic monomers are joined by monodispersed, flexible,
hydrophilic spacer chains comprising n � 1 monomers
of size b. It is limited to the case of polysoaps that form
spherical intrachain micelles. The overall polymerization
degree is N ≈ mn� 1. We assume that m is large enough
so that a single polysoap forms numerous intrachain mi-
celles. The amphiphilic monomers are characterized by the
volume, v, and the length, l, of their hydrophobic tails. It
is assumed that the amphiphilic monomers do not adsorb
onto the backbone. For simplicity we limit the discussion
to solutions of high ionic strength where long range elec-
trostatic interactions are screened out.

2.1 The intrachain micelle

The structure of the intrachain micelles is reminiscent of
that of micelles formed by monomeric, non-polymerized
amphiphiles. The hydrophobic tails form an inner, dense
core. The ionic head groups are localized at the core-water
interface. The intrachain micelles are however surrounded
by a swollen corona formed by the flexible, hydrophilic
spacers joining the amphiphiles (Fig. 1). The corona of
spherical micelles is similar to the corona of star polymers.
It is thus convenient to describe the intrachain micelles
by combining two models [5]: one is the phenomenological
model of Israelachvili et al. for “simple” micelles [17]. The
second is the Daoud-Cotton model for the corona of star
polymers [18]. Within this approach the micelle is char-
acterized by the area per head group, a. Because of the
constant melt density of the core, a is related to the ag-
gregation number, p, as p ≈ v2/a3. The free energy per
micellized amphiphile consists of four terms:

(i) the transfer free energy of the hydrophobic tail from
water into the core, −kTδ, where k is the Boltzman
constant, T is the temperature and δ > 0. This term
does not affect the equilibrium structure of the mi-
celles;

(ii) the surface free energy of the core water interface,
γkTa where γ is the surface tension of the core
boundary in units of inverse area. This term promotes
micellar growth;

(iii) the screened electrostatic repulsion between the
head-groups is introduced as K/a where K is a phe-
nomenological constant that depends on T , the ionic
strength and the nature of the head group. This term
favors smaller micelles;

(iv) the last term, reflecting the repulsion between the
coronal loops, is kTp1/2 lnRcorona where Rcorona ≈
n3/5p1/5b is the span of the corona in a good sol-
vent [19]. This term also favors smaller micelles.

The first three terms, on their own, describe a free mi-
celle formed by unpolymerized amphiphiles. In the equi-
librium state γkTa is comparable to K/a. This condition
specifies the equilibrium area per head-group in free mi-
celles, ao ≈

√
K/γ. It is convenient to use the equilibrated
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free micelles as a reference state. It specifies a size scale,
ao or po ≈ v2/a3

o and an energy scale, γao. In turn, this
suggests a dimensionless variable u = p/po ≈ (ao/a)3.
Utilizing the packing condition p ≈ v2/a3 it is possible to
express the free energy per amphiphile in an intrachain
micelle as

ε/kT ≈ −δ + γao(u
−1/3 + u1/3 + κu1/2). (1)

The u−1/3 term reflects the surface contribution, u1/3 al-
lows for the head-group repulsion while the last term,
κu1/2, is due to the coronal contribution. Here κ ≈

kTp
1/2
o lnn/γao is a dimensionless parameter, the ratio

of the coronal and the head-group penalties when a = ao.
κ measures the relative importance of the coronal term in
comparison to γao. Because the corona is large compared
to the core, the intrachain micelles are typically larger
than the corresponding free micelles. However, the equi-
librium aggregation number of intrachain micelles, peq, is
always smaller because of the coronal penalty. The im-
portance of this last effect is determined by κ. When
κ � 1 the coronal penalty is negligible and ueq ≈ 1. In
this case the equilibrium area per head group in the in-
trachain micelle, aeq, is essentially that of a free micelle,
that is aeq ≈ ao. The aggregation numbers are also com-
parable peq ≈ po. In the opposite limit, when κ � 1,
the equilibrium aggregation number is much smaller. The
coronal term, κu1/2, is comparable to the surface term,
u−1/3leading to ueq ≈ κ−6/5. Most of the following dis-
cussion is constructed so as to apply to arbitrary values of
κ, provided that intrachain micellization is not repressed
altogether. Accordingly it is helpful to simplify the nota-
tion. Unless stated otherwise, p and Rmicelle will refer to
the equilibrium values of the unperturbed micelles.

2.2 Micelle-micelle interactions

The corona of an intrachain micelle is structurally simi-
lar to the corona of a star. The interactions between the
two types of coronas are however qualitatively different.
The interaction between two star polymers in a good sol-
vent is purely repulsive. The onset of the repulsion occurs
when the coronas are at grazing contact. Closer approach
increases the number of repulsive monomer-monomer in-
teractions giving rise to a free energy penalty

∆Fr/kT ≈ p
3/2 lnRcorona/D (2)

where 2D is the distance between the two centers [20].
In marked distinction, the interaction between the coro-
nas of intrachain micelles result from the superposition of
two contributions. First, the “osmotic” repulsion discussed
above. Second, an entropic attraction due to the exchange
of amphiphiles between the two micelles. Exchange of am-
phiphiles between simple micelles can take place at any
range, even when the distance between the micelles is very
large. On the other hand, exchange of polymerized am-
phiphiles between intrachain micelles can only take place
at a finite range because the amphiphiles are joined by

spacer chains. The length of the spacers, nb, sets an effec-
tive maximal range. The optimal range is D ≈ Rcorona, at
grazing contact, so as to avoid stretching the spacer chains
and the associated elastic penalty. Such an exchange re-
sults in a gain of mixing free energy of roughly kT ln 2 per
amphiphile [21]. If all p amphiphiles can exchange, the mi-
celles gain roughly pkT by being at grazing contact while
losing only kT of translational entropy. The number of
amphiphiles that can undergo exchange when the micelles
are at grazing contact is actually smaller. Only the am-
phiphiles with spacer chains whose midpoints are in the
overlap region can exchange without incurring an elastic
penalty. A simple estimate of the associated exchange at-
traction proceeds as follows [5]. The two micellar coronas
can interpenetrate up to a depth comparable to the size of
the outmost coronal blob ξo ≈ Rcorona/p

1/2. The free en-
ergy penalty associated with such overlap is roughly kT .
Such overlap gives rise to a contact area of A ≈ Rcorona ξo
between the coronas. The end points of the arms of stars
tend to be localized at the periphery of the corona. Similar
effect is expected for the midpoints of the loops. Accord-
ingly, each ξo blob contains a single midpoint. Thus, the
number of midpoints in the overlap region is A/ξ2

o ≈ p
1/2

and the corresponding exchange free energy is

∆Fex/kT ≈ −p
1/2. (3)

In turn, ∆Fex gives rise to a negative second virial coef-
ficient for micelle-micelle interactions, B < 0, whenever
p > 1. Thus polysoaps experience poor solvent condi-
tions even though the backbone is hydrophilic. Accord-
ingly, polysoaps with m & p are expected to precipitate.
Long polysoaps, with m/p � 1 are also expected to ex-
hibit collapsed configurations. It is however important to
note an important difference between the situation de-
scribed above and that of “simple” flexible homopolymers
in poor solvents. The attraction between monomers in a
poor solvent is instantaneous. The exchange attraction be-
tween micelles is not. The exchange is an activation pro-
cess involving the expulsion of a hydrophobic tail out of
the micellar core and into the aqueous medium. The as-
sociated characteristic time scales as τ ≈ exp(−δ) and is
thus tunable by varying the length of the tail. The ex-
change interaction is only relevant when the observation
time is much longer than τ .

2.3 Large scale, tertiary, structure

There is a clear hierarchy in the intrachain self as-
sembly of polysoaps. A short polysoap forms a single
intrachain micelle. Long polysoap can form numerous
intrachain micelles. In such a case it is useful to distinguish
between three levels of the hierarchy of self assembly [4,5].
As in protein science it is convenient to refer to the chem-
ical sequence as primary structure. The next level, the
secondary structure, consists of the intrachain micelles.
The configuration of the string of micelles defines the ter-
tiary, large scale, structure. Three extreme scenarios may
be envisioned for the tertiary structure: a linear string,
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a branched one and a spherical globule of close packed
micelles. The globular, collapsed, state is thermodynami-
cally favored when the exchange attraction is important.
The discussion of the deformation behavior, in Section 3,
concerns this last state. To introduce the necessary back-
ground we focus primarily on the linear string and the
globular state.

A linear string of micelles is expected to behave as
a self avoiding chain where micelles play the role of
monomers. The span of the linear string is

Rstring ≈ (m/p)3/5Rmicelle. (4)

Typically the span of the corona is much larger than
the radius of the core and the size of the micelle is
Rmicelle ≈ Rcorona. The globular state is analogous to
the collapsed configuration of a flexible homopolymer. Be-
cause the second virial coefficient for micelle-micelle inter-
actions is strongly negative the polysoap forms a spherical
globule of close packed micelles with a radius

Rglobule ≈ (m/p)1/3Rmicelle. (5)

In this context the intrachain micelles are analogous to
collapse blobs. It is possible to assign an effective surface
tension, kTγg, to the boundary of the globule. It is trace-
able to the inability of the outermost micelles to undergo
exchange interactions at the exterior boundary of the glob-
ule. The resulting excess free energy is roughly p1/2kT per
micelle leading to

γg/kT ≈ p
1/2/R2

micelle. (6)

Before we proceed, it is important to note three features
that distinguish the globular form of polysoaps from the
collapsed state of flexible homopolymers. First, while the
polysoap chain is globally collapsed, Rglobule ∼ m1/3, the
coronas of constituting micelles are swollen i.e., on length
scales smaller than Rmicelle the density is not uniform.
Second, as noted previously, the exchange attraction is an
activation process and metastable, non-globular configu-
rations are possible. Finally, γg ∼ p1/10/n6/5 depends not
only on T but also on n. It thus possible to tune γg by
changing the length of the spacer chains.

As was noted earlier, other metastable configurations
can be adopted by the string of micelles. Of these, the
randomly branched configuration is entropically favored.
The globular, collapsed state of the branched configura-
tion is identical to that reached by a linear string. Both
are characterized by Rglobule and γg given earlier. How-
ever, the underlying topology is different, an issue that
will be addressed later.

3 Extension of globular polysoaps

The distinctive features of the elasticity of polysoaps arise
because of the coupling of the strain to the “internal”
degrees of freedom associated with the secondary and ter-
tiary structure. Both the tertiary and the secondary struc-
ture can re-equilibrate thus affecting the corresponding

force law according to the Le Chatelier principle. For weak
deformations only the tertiary, large scale, structure is af-
fected. In particular, the globule unfolds into a string of
micelles. Stronger deformations couple with the secondary
structure, the intrachain micelles, by favoring micellar dis-
sociation. In the case considered, when the number of in-
trachain micelles, m/p, is large and Rglobule � Rmicelle,
the two process involved well separated length and force
scales.

The extension of the globular configuration is similar
to the stretching of a collapsed flexible chain [6,7]. The
spherical form of the globule is initially deformed into an
ellipsoid while maintaining constant volume correspond-
ing to close packing of the intrachain micelles. Within this
linear response regime the free energy penalty incurred is
due to the increase of the surface free energy

F/kT ≈ γg∆A ≈ γg(R−Rglobule)
2 (7)

where ∆A ≈ (R − Rglobule)
2 is the surface area incre-

ment associated with the deformation. The correspond-
ing restoring force, f = −∂F/∂R, is proportional to the
strain, (R−Rglobule)

f/kT ≈ −γg(R−Rglobule). (8)

This type of process can not proceed indefinitely. If pur-
sued, the distorted globule will assume a cylindrical shape
and, eventually, form a string of micelles. This scenario
gives rise to a van der Waals loop in the fR diagram. This
is indicative of instability with respect to a coexistence of
a weakly elongated globule and a stretched string of mi-
celles. The effect is reminiscent of the Rayleigh-Plateau
instability [22] involving the break up of a fluid jet into a
succession of droplets. The occurrence of a van der Waals
loop suggests the onset of a globule-string coexistence.
Within the coexistence regime the chain comprises of a
string of m′/p micelles and a roughly spherical globule of
(m−m′)/p micelles. The free energy of this configuration
is roughly

F/kT ≈ γgR
2
micelle

[(
m−m′

p

)2/3

+
m′

p

]
(9)

where the first term reflects the surface free energy of the
globule and the second the stretching energy of the micel-
lar string. The end to end distance is

R ≈ Rmicelle

[(
m−m′

p

)1/3

+
m′

p

]
. (10)

Here the first term is the radius of the globule and the
second is the span of the stretched string of micelles.
When m′ is sufficiently large we may approximate dR
as Rmicelledm

′/p and the corresponding force law, f =
−∂F/∂R, is

f/kT ≈ −γgR
2
micelle

(
R−1

micelle − r
−1
globule

)
(11)
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where rglobule ≈ Rmicelle

(
m−m′

p

)1/3

denotes the radius

of the partialy depleted globule. It is important to note
that f decreases as rglobule approaches Rmicelle. As a re-
sult different scenarios are expected for the f = const′

and the R = const′ ensembles. In the first case the glob-
ule unravels completely once a critical force, fc/kT ≈
γgRmicelle ≈ p1/2/Rmicelle, is applied. No globule-coil co-
existence is expected. Such a coexistence is however ex-
pected when the end to end distance is imposed (Fig. 2).
In this case the tension in the string is fc. The onset of
the coexistence occurs when R ≈ Rglobule + Rmicelle as
seen by equating fc/kT to (8). The upper boundary of
this regime corresponds to a fully extended string of mi-
celles, Rmax ≈ (m/p)Rmicelle.

Some insight regarding fc may be gained by not-
ing that the corresponding tensile energy per micelle,
fcRmicelle, is comparable to the exchange free energy of
a micelle at the surface of the globule, p1/2kT . It is useful
to note that fc may also be expressed as fc/kT ≈ 1/ξo
where ξo is the size of the outermost coronal blob, ξo ≈
Rmicelle/p

1/2. Thus fc is comparable to the tension at the
periphery of the unperturbed corona due to the crowd-
ing induced stretching of the loops. Hence, subjecting the
string of micelles to a tension fc does not perturb the
micellar structure.

Further extension of the unraveled string of micelles is
accommodate first by stretching the bridges between the
intrachain micelles. Eventually it enforces the dissociation
of some of the micelles. This coexistence regime ends when
all the micelles are dissociated and the chain deformation
proceeds as in a “simple” flexible chain. The free energy
of the chain in the stretched bridges regime is

FB/kT ≈ mεo + (R/RB)5/2. (12)

The first term allows for the lowered free energy of am-
phiphiles incorporated into unperturbed micelles while the
second accounts for the Pincus elastic penalty [23,24] due
to the strong stretching of the micellar string. This regime
involves strong stretching of m/p bridges comprising each
of n monomers. Consequently, the “elastic constant” is
specified by RB ≈ (mn/p)3/5b. The corresponding force
law is

f/kT ≈ (R/RB)3/2R−1
B . (13)

This regime lasts while the elastic penalty,
(R/RB)5/2, is small compared to mεo, i.e., when
τb ≈ (mγao)

−1(R/RB)5/2 � 1. The micellar structure
within this regime is only weakly perturbed. Upon further
extension of the chain the elastic penalty couples strongly
with the micellar structure and τb ≈ 1. In this situation it
is no longer possible to view the chain as a uniform string
of intrachain micelles. Rather, the extension is associated
with a coexistence of intrachain micelles and dissociated
amphiphiles. The detailed analysis of this scenario is
somewhat tedious. The essential features of this regime
may be recovered using a simple argument [10]. Two
free energies are involved. One is the free energy (12),
of a string of micelles in the stretched bridges regime,

FB. The second is the free energy of a fully dissociated,
strongly stretched chain Fdis/kT ≈ (R/RF)5/2, where
RF ≈ (mn)3/5b ≈ p3/5RB is the Flory radius of the
flexible, swollen backbone. The bottom of the free energy
curve FB is located at RB < RF and is m|εo| below
the minimum of Fdis. For small R, FB is lower than
Fdis. However, RB < RF and thus the “spring constant”
of the fully dissociated chain is weaker. Consequently,
the two curves cross at Rco ≈ RF[m|εo|/(p3/2 − 1)]2/5.
For R > Rco the fully dissociated chain is of lower free
energy. The cross over of the free energy curves is a rough
indicator for a first order phase transition involving a co-
existence between micellized and dissociated amphiphiles.
This simple view suggests that the coexistence regime is
associated with a plateau in the force law with fco ∼ Ro.
Strictly speaking, this simple view is wrong. Since the
interactions in this system are short ranged, the mixing
entropy of the one dimensional mixture of micelles and
dissociated amphiphiles disallows a first order phase
transition [25]. As a result the tension in the plateau
regime is not independent of R. It exhibits instead a weak
logarithmic dependence. The cross over regimes at the
boundaries of the coexistence regime are also smoothed
out. Nevertheless, the force diagram obtained by ignoring
the mixing entropy, the Smix = 0 approximation, yields
the correct tension and length scales. These can be
obtained by the following simple argument. The onset of
micellar dissociation is expected to occur when the elastic
energy of the stretched bridges is comparable to the
micellization free energy of an amphiphile incorporated
into an unperturbed micelle. Denoting the span of a
stretched bridge by rco we have

fcorco ≈ kT εo ≈ kT (γao − δ). (14)

Since the bridge is strongly stretched the Pincus force law
applies [23,24]. Consequently,

rco ≈ nb(fcob/kT )2/3. (15)

The combination of (14) and (15) yields

fcob/kT ≈ (| εo | /n)3/5. (16)

The coexistence regime, within the Smix = 0 approx-
imation, when fco ∼ Ro, occurs in a sharply defined
range, RL < R < RU. These boundaries are smeared
out when mixing entropy is allowed for. Nevertheless, RL

and RU provide a good approximation for the boundaries
of this regime. To obtain RL we utilize (13) in the form
fco/kT ≈ (RL/RB)3/2R−1

B leading to

RL ≈ RB

(
fcoRB

kT

)2/3

. (17)

Similarly we obtain RU from the force law of the fully
dissociated chain, fco/kT ≈ (RU/RF)3/2R−1

F leading to

RU ≈ RF

(
fcoRF

kT

)2/3

≈ pRL. (18)
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For R > RU all amphiphiles are fully dissociated, there
is no trace of the intrachain self assembly and the corre-
sponding force law is

f/kT ≈ (R/RF)3/2R−1
F . (19)

Our initial considerations, concerning the globule and its
unraveling, followed the discussion of the deformation be-
havior of a collapsed homopolymer. The collapsed globule
is implicitly assumed to be a closely packed linear string
of micelles. Such view is meaningless in view of the ex-
change interactions favoring the globular state. With these
in mind it is impossible to assign an amphiphile to a spe-
cific micelle and the “topology” of the micellar string is
not defined. However, the validity of our analysis does
not depend on the topology of the micellar string within
the globule. It only requires that the extension is slow
enough to allow for the repartioning of the amphiphiles
into the “tadpole” configuration obtained in the coexis-
tence regime. This is certainly the case for the equilibrium
force laws considered.

Altogether, the extension of a globular polysoaps in-
volves the following regimes. Initially, the extension be-
havior is similar to that of a collapsed homopolymer. In
this range the micelles may be considered as effective
monomers. Their structure is unaffected. The globule is
first deformed into ellipsoid. Stronger extension results in
globule-string coexistence. Eventually, the globule disap-
pears. For stronger extension the micelles can not be con-
sidered as monomers of fixed structure. The strain affects
their structure. This results in coexistence of dissociated
amphiphiles and weakly perturbed micelles. When all the
micelles are dissociated the extension behavior reflects the
elasticity of the backbone.

4 Compression of a globular polysoap

The confinement behavior of a globular polysoap is not
as rich as in the extension case. No coexistence is ex-
pected and the force laws do not exhibit plateaus. We
can distinguish a number of regimes, characterized by dif-
ferent force laws. These reflect, as in the extension case,
coupling to the different levels of the intrachain self or-
ganization i.e., globule and micelles. With this in mind
we can distinguish between two main regimes. When the
distance between the confining plates, D, is in the range
Rglobule � D � Rmicelle, the confinement does not affect
the micellar structure. In this range only the globular or-
ganization is modified. In the range Rmicelle � D� b the
micellar structure is strongly affected.

In the weak confinement regime, Rglobule > D �
Rmicelle, the globule changes its shape while retaining a
constant volume Vglobule ≈ (m/p)R3

micelle. For simplicity
we focus on the case of inert confining surfaces i.e., non
penetrable surfaces that are neither attractive nor repul-
sive so that the globule surface tension at the wall remains
γg. Initially, in the linear response regime, it is trans-

formed into an oblate ellipsoid. The resulting change in
the surface area of the globule is ∆A ≈ (Rglobule − D)2.
The corresponding free energy penalty is

F/kT ≈ γg(Rglobule −D)2 (20)

and the associated restoring force, f = −∂F/∂D, is

f/kT ≈ γg(Rglobule −D). (21)

This force law applies when Rglobule−D� Rglobule. When
D� Rglobule the strongly confined globule assumes a disk
like shape, with an in-plane radius d specified by d2D ≈
Vglobule. In this regime the dominant contribution to the
surface area of the globule is ∆A ≈ d2. The associated
free energy penalty, γg∆A, is

F/kT ≈
γgVglobule

D
≈

m

p1/2

Rmicelle

D
(22)

and the resulting restoring force is

f/kT ≈ γgVglobule/D
2. (23)

The claim that the micellar structure is unperturbed in
this regime is justified by considering the ratio of the free
energy (22) and the free energy of the amphiphiles in an
unperturbed micelle, mεo. This perturbation parameter,
t ≈ Rmicelle/Dεop

1/2, is indeed small while D � Rmicelle.
Strong confinement, D � Rmicelle, does affect the micel-
lar structure. In this range the restoring force is domi-
nated by the additive elastic response of the individual
micelles. The relevant regimes appear also in the confine-
ment of a linear string of micelles [9]. For brevity we quote
the results with a few explanatory notes. Initially, while
D > (n/p)3/5b, the micellar confinement does not affect
the aggregation number. Such weak coronal confinement
is associated with a penalty of

F/kT ≈ p3/2

(
Rmicelle

D

)5/8

(24)

per micelle [26]. Accordingly, the force law per polysoap is

f/kT ≈
mp1/2

Rmicelle

(
Rmicelle

D

)13/8

. (25)

Upon further confinement the perturbation parameter
grows. When t 1 1 the deformation couples strongly to the
micellar structure. In this regime the dominant penalty
term, due to the micellar confinement, favors smaller mi-
celles. Accordingly, the aggregation number is no longer
the equilibrium value characterizing unperturbed micelles.
The regimes summarized in the following correspond to
the case of κ� 1. In this limit p ∼ (D/Rmicelle)

15/23 and
the confinement penalty of the polysoap is

F/kT ≈ mγao

(
lnn

κ

)8/23 (
Rmicelle

D

)5/23

(26)
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leading to

f/kT ≈
mγao

Rmicelle

(
lnn

κ

)8/23(
Rmicelle

D

)28/23

. (27)

Finally, in the range (n/p)3/5b > D > rcore the aggre-
gation number decreases logarithmically with D and the
leading confinement penalty is [27]

F/kT ≈ p2/3(RF/D)5/3 (28)

while the restoring force is

f/kT ≈
p2/3

RF

(
RF

D

)8/3

. (29)

Qualitatively similar scenario is obtained in the κ � 1
limit.

The weak compression of a globular polysoap is op-
posed by the surface free energy. It is reminiscent of the
confinement of a fluid droplet. In this regime the micelles
may be viewed as effective monomers of fixed structure.
Stronger deformation, when D < Rmicelle, affect the mi-
cellar structure. At first the micellar corona is weakly
compressed with no effect on the aggregation number.
Stronger compression favors decrease in p.

5 Extensional flow: a globule-stretch
transition

In the situations considered thus far the “static” exten-
sion behavior was studied i.e., the end to end distance or
the tension were externally imposed. Such is the case in
optical tweezers experiments, for example. Extension can
also be induced by appropriate flow fields. In these exper-
iments one controls the characteristics of the flow, shear
rate, velocity, etc. The tension in the chain is due to a
hydrodynamic drag force coupling the flow field and the
configurations of the chain. The coupling changes with
the configuration and abrupt configurational transitions
can occur. In the following we will consider the stretching
of a globular polysoap by an extensional flow field corre-
sponding to stationary longitudinal shear. In this case the
two plateau regimes merge and the polysoap undergoes a
single globule-stretch transition. For comparison purposes
we first recall, following de Gennes [24], the behavior of
“simple” flexible chains subjected such flow field in a good
solvent.

The extensional flow field is specified by the Cartesian
components

vx = sx,

vy = −sy/2, (30)

vz = −sz/2.

The polymer is placed at the origin, at the stagnation
point, and resides there for a time t. It is assumed that t
is long compared to characteristic relaxation time of the

polymer t > τF ≈ ηR3
F/kT . The chain is stretched along

the x axis by the Stokes friction force. It is possible to dis-
tinguish between two limiting regimes. For strong shear,
sτF > 1, the chain is deformed into a prolate ellipsoid.
When the ellipsoid is highly extended it can be approxi-
mated as a cylinder of length r and diameter d. The fric-
tional force acting on the cylinder is

kηvx(x)dx = kηsxdx (31)

per element of length dx placed at x. Here η is the vis-
cosity of the solvent and k = 2π/ ln(r/d) [28,29]. In the
framework of a scaling analysis k may be treated as a
constant. The frictional force experienced by the chain is
thus

f =

∫ r

−r
kηsxdx ≈ kηsr2. (32)

As we shall see, an abrupt coil-stretch configurational
transition is expected as the shear rate, s, increases. Force
balance consideration are insufficient in order to analyze
this transition. Towards this end it is necessary to con-
struct the corresponding free energy. This is possible since
the flow field is stationary and the resulting drag force
can be obtained from the Kramers potential, FKramers.
The drag force is given by f = −∂FKramers/∂r where
FKramers ≈ −kηsr3. It is convenient to express FKramers

in terms of the Zimm relaxation time of the swollen coil
τF ≈ ηR3

F/kT

FKramers/kT ≈ −sτFλ
3 (33)

where λ = r/RF > 1. The extension of the coil is op-
posed by the elasticity of the chain. In the strong exten-
sion regime the Pincus elastic penalty is applicable

Fel/kT ≈ λ
5/2. (34)

The total free energy for strong shear, high s, is thus

F/kT ≈ λ5/2 − sτFλ
3. (35)

Eventually, for strong extensions, the finite extensibility of
the chain gives rise to a steeper λ dependence. Our discus-
sion will be based on equation (35). It is however impor-
tant to note the behavior of F for the full shear range. In
the weak shear regime, while the chain is weakly stretched,
the frictional force is well approximated by the Stokes law
for the non-draining coil f ≈ −ηsR2

F. The corresponding
Kramers potential is FKramers/kT ≈ −sτFλ while the elas-
tic penalty, in the linear response regime, is Fel/kT ≈ λ2.
Note that for λ < 1 this term is supplemented by a penalty
opposing over-proximity of the end points of the coil. Al-
together, for small s, F/kT ≈ λ2 − sτFλ. Altogether, F
can exhibit two distinct minima. For weak shear, low s,
the minimum occurs at λ ≈ 1, corresponding to the un-
perturbed coil, RF ≈ N3/5b. As s increases, a second
minima corresponding to extended configuration develops.
Initially the two minima are separated by a high poten-
tial barrier preventing the coil-stretch transition. As s in-
creases the barrier shrinks and its position shifts towards
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λ ≈ 1. The onset of the coil stretch transition, sc, may be
identified with the disappearance of the barrier. For s > sc

only the second minima, corresponding toR ∼ N survives.
It is possible to obtain a rough estimate of sc by analyzing
(35). It exhibits a barrier of height Fbarrier/kT ≈ (sτF)−5

at λbarrier ≈ (sτF)−3. The critical sc may be identified as

sc ≈ 1/τF (36)

when Fbarrier/kT ≈ 1 and λbarrier ≈ 1.
The “static” extension of a “simple” coil, in the ab-

sence of the extensional flow field, proceeds smoothly.
The initial chain extension follows Fel/kT ≈ λ2 while
stronger extension is described by the Pincus free energy
Fel/kT ≈ λ5/2. The corresponding free energy curve ex-
hibits a single minima at λ ≈ 1. No abrupt transition
occurs. The coil-stretch transition in a flow field occurs
because the hydrodynamic drag force, as described by
FKramers, modifies the free energy curve giving rise to a
second minima at λ� 1. This is due to the sharp increase
in the frictional force, ∼ λ2, as the chain is extended.
The topography of the free energy curve as s varies deter-
mines sc. The situation is qualitatively different for globu-
lar chains. In this case an abrupt configurational transition
is expected under “static” conditions, in the absence of a
flow field. Consequently it is possible to obtain sc from
force balance considerations. For collapsed homopolymers
there is single sc corresponding to the unraveling of the
globule into a stretched coil [30]. In the case of globular
polysoaps one may initially expect two critical s, corre-
sponding respectively to: (i) the unraveling of the globule
into a stretched string of micelles and (ii) the extension
induced dissociation of the of the intrachain micelles. As
we shall see this is not the case. The critical shear asso-
ciated with the unraveling of the globule produces a fully
dissociated stretched coil.

The sc corresponding to the unraveling of the globular
polysoap is obtained by balancing the associated tension,
fc/kT ≈ γgRmicelle, with the frictional Stokes force acting

on the globule whose radius is Rglobule ≈ (m/p)1/3Rmicelle.
The frictional coefficient of the globule is ηRglobule and
thus

fc/kT ≈ sηR
2
globule/kT (37)

leading to

scηR
3
micelle/kT ≈ p

7/6/m2/3. (38)

The critical tension in the chain induces full dissociation.
This can be seen by comparing fco, as given by (16), to the
tension experienced by a fully extended chain of micelles
at sc given by (38). The length of the extended string is
Rmax ≈ (m/p)Rmicelle, and the corresponding tension is
ηscR

2
max. The condition (|εo|/n)3/5 ≈ ηscR

2
max/kT speci-

fies mmax

mmax ≈ (| εo | /n)4/5R
3/2
micellep

5/8 ≈ (| εo |)
4/5n1/10p74/80

(39)

such that the polysoap is fully dissociated at sc if m >
mmax. Essentially, mmax ≈ p and thus a string ofm/p� 1

micelles will undergo a globule-stretch transition lead-
ing to complete dissociation when s > sc. The essential
physics is as follows. At sc the drag force on the globule is
fc. This causes unraveling of the globule into a stretched
string of micelles of length Rmax ≈ (m/p)Rmicelle. As the
string unravels the drag force grows as λ2 while the elastic
restoring force grows less rapidly, as λ3/2. Consequently,
the chain extension proceeds further. At the plateau re-
gion, RL < R < RU, the situation is even more extreme
because the elastic force grows as lnλ. The equilibrium
state is eventually reached, for a strongly extended disso-
ciated chain, when finite extensibility effects give rise to a
steeper growth of the elastic force.

6 Discussion

Long polysoaps exhibit a hierarchy of self assembly. A
secondary structure, the intrachain micelle, is character-
ized by a short length scale and a relatively high energy
scale. The tertiary structure, the configuration of the mi-
cellar string, exhibits a larger length scale and a lower
energy scale. Both the energy and length scales are well
separated in the case of long polysoaps. As a result the
deformation behavior of long polysoaps exhibit two dis-
tinct regimes. Weak deformations couple to the tertiary
structure while stronger strains couple to the secondary
structure. In the case considered, of globular polysoaps,
the weak deformation behavior is similar to the one pre-
dicted for collapsed, flexible homopolymers. The strong
deformation scenario is identical to that predicted for lin-
ear strings of micelles. The two regimes merge for stretch-
ing induced by an extensional flow. In this case the chain
undergoes a globule-stretch transition yielding a strongly
extended, fully dissociated chain.

A similar separation of length and energy scales may
occur in multidomain proteins. The force law character-
izing the extension of the muscle protein Titin [15,16] is
reminiscent of the force law predicted for polysoaps form-
ing a linear string of micelles [10]. These considerations
suggest that the extension behavior of globular multido-
main proteins may prove similar to the scenario expected
for globular polysoaps.

The discussion presented focused on the equilibrium
deformation behavior of an isolated globule. This is ap-
propriate as a first step in the exploration of this prob-
lem. A number of important effects were not considered.
First, globular polysoaps tend to undergo phase separa-
tion involving a gel-like phase and a dilute solution of free
globules. Second, finite rate of deformation may lead to
hysteresis effects when the internal relaxation times are
long. These may play an important role in experimental
situations.
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